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Abstract 
 
Introduction  
The US epidemic of autism has previously been noted to be growing in an exponential 
manner or faster.  Although some causes of autism and disordered brain development have 
been elucidated the underlying causes of this striking phenomenon remain obscure.  Routine 
linear regression techniques were recently used to suggest that the renaissance of the nation’s 
cannabis use may be a primary driver of this mega-trend.  The present study brings to bear 
the power of geospatiotemporal analysis on this question to test the detailed geospatial and 
temporal associations previously described at the macro-level. 
 
 

Methods  
The Individuals with Disabilities in Education Act (IDEA) dataset was interrogated along 
with data from the National Survey of Drug Use and Health (NSDUH) conducted by the 
Substance Abuse and Mental Health Services Administration (SAMHSA) and Drug 
Enforcement Agency data.  Geotemporo-spatial modelling techniques were employed using 
the R package splm to investigate the national, regional and state level geospatial 
relationships of cannabis and other drug use with US autism rates.  Bonferroni adjustment of 
the level of statistical significance to q<0.0013 was performed to accommodate multiple 
testing. 
 
 

Results. 
At the national level daily cannabis use in the 18-25 years age group was associated with the 
autism rate as a main effect from P=4.69x10-14.  At the regional level in a full two-step 
generalized SEM2SRRE+SAR spreml model with 6 years spatial lag cannabis use was again 
significant as a main effect from P<2.2x10-16.  At the state level cannabis was significant as a 
main effect in an spgm spatial error model from P=0.00016.  On t-testing in the whole dataset 
the autism rate in Decriminalised states was 52.16+3.69 v 31.69+1.04 in Illegal States (P= 
2.5958 x10-7).  In a spatial SARAR model decriminalization of cannabis laws was significant 
from P=9.96x10–11 and medical cannabis laws was significant from P=8.56x10-13.   
 
 

Conclusions 
These data confirm the geospatial and temporal associations of cannabis with the US autism 
epidemic and demonstrate that cannabis is independently associated with autism at three 
geospatial levels thereby extending previous investigations.  Certain statistical modelling 
features (high adjusted R-squared, very low P-values, two-step instrumental modelling, 
uniformity of geospatial  scale-invariant results), a plethora of biological mechanistic links 
between prenatal cannabis exposure and deranged brain development, and robust fulfillment 
of Hill’s causality criteria indicate not only causality, but confirm that indeed increased 
cannabis use is likely to be a primary driver of the modern US autism epidemic presently in 
hyper-exponential growth phase.  Community-based reports suggest that these quantifiable 
data may be but the tip of a much larger paediatric neurological epidemiological “iceberg”.  
Important public health messages for the global medical and public health communities 
clearly follow directly countermanding the current trend for widespread cannabis 
legalization.  



Introduction 
 
The rate of autistic spectrum disorder appears to be undergoing a rapid rise across almost 
every jurisdiction in USA according to the most recent data.  Although a number of causes of 
autism have been well described and are widely accepted the basic cause of this modern 
epidemiological tsunami appears to be not at all well understood.  It has previously been 
shown that in fact this acceleration of autism is actually following an exponential growth 
pattern and is growing at a statistically significantly higher rate in states where cannabis is 
legal 1.  Concerningly it has recently been shown that at current rates of growth of the 
epidemic by 2030 the rates in states with legal policies are estimated to be 60% higher than in 
those which do not 2. 
 
Technically however these studies were methodologically limited fundamentally to ordinary 
least squares analysis and routine methods of statistical analysis as might be applied to most 
datasets where variables are distributed independently and identically distributed – so-called 
“iid” variables.  The first law of geography enunciated in 1970 by Waldo Tobler states that 
things close together affect things more than things further away 3.  In 2017 he modified this 
law to state that things geographically and temporally close together affect things nearby 
more, thereby including the temporal dimension in geotemporospatial analysis.  Moreover 
spatially distributed variables can show serial or sequential autocorrelation amongst the 
variables, or there can be correlation between the error terms and the variables – so-called 
“endogeneity”. 
 
Furthermore the fundamental analytical issue remains that even though trends are well 
established at the national level this might not apply at higher levels of spatial resolution.  
Since the autism data exists at state, regional and US national level this dataset lends itself to 
the novel application of such newly described powerful geospatial analytical tools at multiple 
spatial scales.   
 
Since the following analysis strongly confirms the original hypothesis at all geospatial levels 
this greatly strengthens our earlier conclusions and provides added confidence to policy 
makers that the major conclusion that cannabis is a major factor driving the currently 
otherwise unexplained epidemic of autism rests on a firm and robust evidence base. 
 
 
Methodological Comment 
 
The main dataset which will be relied upon is a secondary analysis of anonymous data 
collected in the US Department of Education Individuals with Disabilities Act (IDEA) dataset 
4.  On occasion the dataset from the Autism Developmental Disabilities Monitoring (ADDM) 
dataset is also used as indicated 4.   Data on cannabinoid exposure in each state over time is 
computed by multiplying the last month cannabis use rate in that state by the mean 
concentration of the various cannabinoids found in Federal seizures at that time point 5,6. 
 
Established geospatial analytical tools such as the plm, splm, spdep and spatialreg packages 
in R-Studio Version 1.2.1335 based on “R” version 3.6.1 from CRAN and GeoDa 



downloaded from the University of Chicago along with other programs have been employed 
as described throughout. 
 
Since 36 final models are presented herein following Bonferroni it is fair to adjust the usual 
level of statistical significance from P < 0.05 to q < 0.0013.  it is worth bearing these 
significance thresholds in mind as we present the following analyses.   
 
In each case full initial models are reduced by the classical method of the sequential 
elimination of least significant variables to arrive at the final reduced model containing only 
significant variables which is presented. 
 
This study has been authorized by the Human Research Ethics Committee of the University 
of Western Australia. 
 
 
Data is presented at the national, regional and state level seriatim. 
 
 
 
Results 
 
National Level data. 
 
Figure 1 presents the national rate of autism derived from the IDEA dataset and the state 
populations taken from the US national Census 2010.  It is clear that the autism rate is rising 
steeply and has now reached 1% nationally.  One notes in passing that the diagnosis of autism 
is not usually finalized till children are eight years of age so this factor inevitably introduces 
lengthy delays into tracking this epidemic at every geographical level.   
 
Since most of the cases survive it is possible to take a cumulative count of the cases since the 
commencement of national records.  This graph is presented in Figure 2, since each year’s 
cohort survives along with preceding and subsequent cohorts.  This figure appears to be 
rising exponentially.  This exponential geometric pattern is confirmed in our earlier reports 1,2 
and also in the results presented below. 
 
Figure 3 presents the national pattern of drug use by drug type as quantified annually by the 
National Survey of Drug Use and Health (NSDUH) published each year from the Substance 
Abuse and Mental Health Services Administration (SAMHSA).   
 
Panel regression, or cross-sectional time-series analysis, is a well established and 
standardized way to look at the relationship amongst variables which are measured in 
repeated locations as a series over time.  The plm (panel linear model) package in R also 
allows the use of two step regression including instrumental variables which allows a more 
refined examination of putatively causal mechanisms to be considered, and also allows the 
ready application of time lagged models to look for delayed effects. 
 



Table 1 presents a series of four models which uses two stage generalized least squares panel 
regression models lagged four and six years.  The first model is an interactive model 
regressing the log autism rate against the five drugs measured consecutively by NSDUH with 
monthly cannabis use.  Models 2 to 4 use measures of daily cannabis use in 18-25 and 26-34 
year olds as the measure for cannabis use as DCan1825 and DCan2634 respectively.  Model 
3 has a cannabis: tobacco interaction and finds the most significant differences with single 
terms involving the cannabis use variables and interactive terms including daily cannabis use 
are significant from P = 4.69 x 10 -14.  The fourth model has the most instrumental variables 
being six in number.  One notes in this series of models the remarkably high values of the R-
squared coefficients of all the models which range from 0.956 to 0.992.  In each case the 
model P-vales are very highly significant since they are all P < 2.2 x 10-16.  These results 
demonstrate unusually high levels of statistical relationships between the measured drugs, 
and particularly daily cannabis use and the reported rates of autism, at a level well beyond a q 
< 0.0013 adjusted for multiple testing. 
 
Whilst it is theoretically possible that some uncontrolled confounding and unidentified 
covariate is the true underlying covariate responsible for these remarkable statistical findings, 
the extremely high R-squared values, the vanishingly low P-values, the unanimity of findings 
across all lagged panel models and the use of the two-step instrumental variable methodology 
all argue strongly for a causal relationship.  This would be consistent with the known 
neurotoxic mechanisms involved in the activity of numerous cannabinoids on the developing 
brain further described below. 
 
Regional Level. 
 
USA is divided into four regions for administrative and census purposes as shown in Figure 
4.  This series of maps is drawn with the R package sf (simple features).  These maps show 
the progress of the autism rate by region across USA and re-sets the scale adjustment with 
each year with the lightest colours indicating the highest rates.  It is clear in these maps that 
the northeast region of USA is usually the highest region for autism. 
 
Figure 5 performs the same task with the R package ggplot2 and holds the colour scale 
constant across all years.  This figure clearly shows the growth and development of the 
autism epidemic across USA by regions and again clearly features its concentration in the 
northeast region.   
 
Figure 6 shows the rate of autism across USA over time by region.  The northeast clearly has 
the highest rates above those of other regions. 
 
Spatial regression can be performed using a spatial lag model on these regional data using the 
South region as the control region.  As shown in Table 2 the other regions have significantly 
higher rates of autism than the south, an effect most marked for the northeast.  Indeed one 
notes that the β = 0.4350 with an applicable P = 6.28 x 10-16.  The model coefficient phi is 
one of the error terms and the coefficient lambda is a metric of the autocorrelation spatial lag 
in the error term of the model.   
 



Table 3 shows the results of spatial regression with full Spatially Autocorrelated with 
Autocorrelation in the error terms (SARAR) models of the log autism rate against the various 
drugs.  Both models shown are interactive models.  The first model shows the results of 
regressions with and interaction between cigarettes (mcigmon), cannabis (mmrjmon), and 
abuse or dependence on alcohol (mAbdAlc).  The second model shows the interaction 
between cigarettes, cannabis and opioid analgesics (manlyr).  In each case highly significant 
terms involving cannabis are found.  In the first model cannabis is significant as a main 
effect. 
 
This analysis has been further refined by the use of the spreml function (spatial panel random 
error maximum likelihood) in the R package splm which allows detailed specification of the 
error and covariance structures as described by Giovanni Millo 7.  When two stage full spatial 
and temporal autoregressive error models and random effects including Kapoor, Kelejian and 
Prucha-type errors and serially correlated remainder errors (SAR+SEM2SRRE models) 
specified at 2, 4 and 6 lags are employed the results are as shown in Table 4.  Again cannabis 
is shown to be very highly significant  in many interactive terms.  Cannabis is also significant 
alone as a main effect in the 2- and 4- lagged models.   
 
 
 
State Level data 
 
Figure 7 shows the autism rate by state for the 20 year period 1992-2011 and tracks the 
emergence and development of the epidemic across the country.  Figure 8 plays a similar role 
drawn in R’s ggplot2.  The pattern is strongly ‘trimodal” with hotspots shown in black in the 
northeast, the Pacific northwest and centrally in Minnesota.   
 
Figures 7 and 8 also show evidence of missing data in several states.  Six data points are 
absent in the time period 1994 – 2011 which preclude the use of spatial modelling techniques 
which require completed datasets known as ‘balanced panels.”   For this reason these missing 
data points were replaced by the established technique of temporal kriging which uses the 
simple mean of the values at time points on either side for that region to complete the data 
series.  In this way missing values for New Hampshire in 1994, Montana in 2006, 
Washington DC in 2007, Vermont in 2007 and 2008 and Wyoming in 2010 were replaced 
with the values 1, 28.5, 69.5, 57.13, 77.87 and 77 respectively. 
 
With these adjustments to the data series the bivariate plots shown in Figure 9 were prepared.  
The pink and purple areas show areas where both cannabis use and autism are high.  This 
autism-cannabis map is compared with a similarly prepared autism-tobacco map in Figure 10 
which appears to be getting progressively more ‘blue’ as tobacco use rates fall across the 
country.  The two sets of maps look markedly different. 
 
Figure 11 is a cluster analysis prepared in GeoDa by asking the program to pick out 4, 7, 12 
and 20 clusters respectively.  Interestingly the program effortlessly picks out first the four 
regions and then apparently clusters reminiscent of those seen on the previous map-graphs. 
 



Figure 12A shows a hinge map which works by analogy to the commonly used box and 
whisker plot in general statistics.  The upper outliers appear in red and the lower outliers 
appear in blue.  Figure 12B is a natural breaks map where the natural breaks in the data are 
used by the software to pick out the best places to make the categories of the autism rates.  
Again prominent states are discerned. 
 
Figure 13 is a Dorlings cartogram of autism across USA at the state level where the autism 
rate is proportional to the redness and size of the circle representing that state. 
 
Figure 14 compares Dorlings cartograms of monthly cannabis use, tobacco use, autism and 
cannabidiol exposure. 
 
Figure 15 is a bivariate scatterplot matrix of four variables against each other, namely autism, 
monthly cigarette use, abuse or dependence on alcohol and annual cocaine use.  Prominent on 
this graph is the mostly negative slopes of the regression lines with each of the comparator 
covariates. 
 
Figure 15 is contrasted with Figure 16 which compares autism to rates of Δ9-THC, 
cannabidiol and cannabinol.  For the autism-Δ9THC and autism-cannabinol regression lines 
the slopes are obviously strongly positive.  For cannabidiol this is not true, but as the 
cannabidiol exposure over this period underwent a complex inverted U-shaped distribution 
this line is probably uninterpretable in this context.  This finding has previously been 
deconvoluted and explored in detail 1. 
 
LISA is a powerful spatial statistics technique which stands for ‘Local Indicators of Spatial 
Autocorrelation’ and has been very elegantly and directly operationalized in GeoDa. 
 
Figure 17 presents a Lisa plot cluster analysis which identifies the high-high, high-low, low-
low and low-high adjoining clusters for autism.  Panel B shows the bivariate relationships 
between cannabis use and autism.  The plot indicates that the Global Moran’s I, a classical 
index of spatial autocorrelation, is 0.127 which is a value in the intermediate range.  The 
significance of these changes is indicated in the Lisa significance map below in panel C. 
 
Figure 18 shows a bivariate Lisa plot of autism and Δ9-THC exposure together.  This plot 
highlights the discordances in the distribution of the two variables. 
 
Figure 19 shows two views of a 3-dimensional plot of the three way relationship between 
time, cannabis use and the autism rate showing the regression surface.  It has been drawn 
with NCSS software. 
 
In Figure 20 this exercise is repeated showing a smoothed surface of best fit.  Again two 
views are shown. 
 
Figure 21 shows a similar exercise plotting a different regression surface for each state. 
Again there appears to be a general relationship between time, increasing cannabis exposure 



and increasing autism rate in most states to the extent that this is discernible from this 
presentation. 
 
Figure 22 shows a similar three-way time-cannabis autism plot prepared with OriginLab 
software. 
 
Table 5 presents the results of ordinary least squares (OLS) analysis and mixed effects 
models of the relationships of drugs and cannabis with the autism rate.  In the mixed effects 
models state is treated as a random factor.  In each case the first model presented combined 
all the other drugs using principal components analysis which is a standard statistical 
technique for reducing the complexity of models and reducing their dimensionality.  In each 
case last month cannabis use is significant at high level and the β-estimates are large.  In the 
case of the direct linear models the R-squared values are also moderately elevated. 
 
A variogram shows the way a parameter varies with geographical distance.  They help to 
advise what kind of spatial model is best with which to conduct a spatial analysis. 
 
Figure 23 presents a variogram prepared in GeoDa for the autism rate.  The variogram cloud 
is shown in the bottom right.  The small nugget is shown in the x-y line plot in the centre of 
the graphs.  The nugget is the distance from the origin of the x-y plot to the commencement 
of the line on the y-ordinate.  The size of the nugget indicates the degree of spatial lag which 
should be required by a good model which adequately accounts for the data. 
 
Figure 24 presents a variogram for monthly cannabis use.  A minimal nugget is noted. 
 
Figure 25 presents a variogram for Δ9-THC exposure.   Again a small nugget is noted. 
 
LaGrange Multiplier (LM) tests are used in spatial statistics to determine the most 
appropriate kind of statistical model to employ to investigate the data.  That is to say they 
help to select the optimal model specification.  Table 6 presents a table of Lagrange 
Multiplier tests prepared in GeoDa.  This table shows that a spatial error model is the most 
appropriate model with which to model the data. 
 
Table 7 presents four simple additive models in parallel where autism is regressed on the first 
principal component of other drug use and monthly cannabis use.  The first is the ordinary 
least squares (OLS) model presented above.  The second model is a spatially lagged model.  
The third is the spatial error model.  And the fourth model combines the spatial lag and 
spatial error models and is known as a SARMA (Spatial Autoregressive Moving Average) 
model.  As noted above the spatial error model is most appropriate and p is significant in this 
model, although multiplicity adjusted q is not. 
 
Table 8 presents results of a model regressing autism on all the drugs separately in linear and 
in various spatial models performed using the splm package in R.  The results of the OLS 
model are presented first.  SPGM (spatial general method of moments) from R package splm 
has been used to conduct the initial regressions.  Δ9-THC and cannabichromene exposure are 
used as instrumental variables for monthly cannabis use in this two-step regression.  A 



SARAR model is presented next.  Next follows a SARAR Model with five instrumental 
variables;  then the spatial error model; followed by a two-step spatial error model with all 
five cannabinoids (Δ9-THC, cannabidiol, cannabichromene, cannabinol and cannabidiol) as 
instrumental variables.  Multiple models of increasing complexity are presented to show that 
the highly significant findings relating to cannabis are almost independent of model design or 
specification and to illustrate the way in which significance changes with increasing model 
complexity. 
 
Table 9 presents simple additive final regression models performed with spml in the splm 
package for spatial lag, spatial error and SARMA models.  Only in the first model does a 
significant term for cannabis remain in the final model. 
 
When the same exercise is performed with spml and spgm in various interactive 
temporospatial models the results shown in Table 10 are derived.  As shown there highly 
significant main and interactive effects for cannabis are shown in each model nearly all of 
which are significant at the multiplicity testing adjusted threshold of q=0.0013. 
 
Although it is not strictly necessary it was considered of interest to examine the changes over 
the period of this lengthy dataset.  Figure 26 charts these changes across time and has been 
prepared in R using the sf package for the four time differences indicated.  The map-graphs 
show that Minnesota and some of the northeastern states- Maine, Pennsylvania, 
Massachusetts and others experienced the most marked changes. 
 
Figure 27 shows that changes in the period 2002-2011 which is the primary period of 
analysis, being the period for which the SAMHSA NSDUH dataset is complete. 
 
Figure 28 presents map-graphically the relevant changes in all of the variables considered for 
this period.  Interestingly one notes on this graph that Minnesota is only high on the autism 
and analgesic scales whilst Maine is high on the analgesic, annual cannabis, tobacco and 
cocaine scales. 
 
Table 11 presents the results of final general method of moments spatial error autocorrelated 
and spatial error with spatially autocorrelated errors models.  In this case the changes in 
autism have been regressed on the changes in the various drugs.  The “d” prefix in front of all 
the drug terms relates to delta, standing for change in the drug of interest.  Again interactive 
terms containing cannabis are significant beyond the multiplicity threshold.   
 
 
Impact of Cannabis Legal Status on Autism Rates 
 
Figure 29 shows that in both the IDEA and ADDM datasets 4 states with legal cannabis had 
higher rates of autism than states which did not.  Finding the same result in two datasets is 
very highly significant indeed.  We have previously published these findings 1,2. 
 
Figure 30 presents boxplots of the autism rate by various legal status parameters for the 
period 1995-2011.  One reads the boxplot by noting where the notches do not overlap which 



indicates statistical significance.  The first panel shows the autism rates applying under each 
legal paradigm.  The progressive rise from Illegal to Medical to Decriminalized status is 
noted and also that the notches for the Decriminalized states do not overlap those for the 
Illegal states.  The second panel dichotomizes the legal status and compares the illegal status 
with other states which are essentially legal or de facto legal paradigms.  Again one notices 
that the notches for the two groups do not overlap.  The third panel compares the autism rates 
in jurisdictions which changed the legal status of cannabis for more liberal paradigms with 
those which did not.  In each case clear indications of significant differences in terms of non-
overlapping notches are noted. 
 
It is possible to quantitate these time-based graphically-indicated changes using t-tests.  The 
following t-statistics can be calculated from the 1995-2011 change dataset, n=51.  For the 
status of illegal v. decriminalized the two rates are 75.51 + 5.07 v 114.20 + 12.69 (mean + 
standard error of the mean),  t = 2.8295, df = 12.00, P = 0.01518.  For the dichotomous illegal 
v non-illegal comparison the two rates are 75.51+5.07 v 100.54+7.98, t = -2.6476, df = 36.89, 
P = 0.01185.  For the illegal paradigm v changed paradigm the two rates are respectively 
81.36+5.72 and 100.77+7.35, t = 2.0819, df = 27.64, P = 0.04673. 
 
When one looks at the whole IDEA dataset for the dichotomous comparison Illegal v 
Decriminalized, n=961, the values are 31.6871+1.0391 v 52.1626+3.6899, t=5.3412, 
df=191.938 and P = 2.5958 x10-7. 
 
Table 12 presents the results of increasingly complex OLS models of legal status.  In each 
case highly significant results are found well below the multiplicity-adjusted threshold.  
Importantly the adjusted R-squared in each case is remarkably high for such simple models; 
indeed in the most sophisticated final model adjusted R2 = 0.8215.  One note that the model 
quadratic in time is superior to the simple model linear in time with Anova: F = 197.09, df=1, 
P < 2.2 x 10-16, so that the final model is the most preferred.  In this model decriminalized 
status is significant P = 1.49 x 10-11. 
 
Table 13 presents the results of LM tests for model structure from GeoDa.  These results 
unequivocally indicate that the spatial error model is the preferred model. 
 
Table 14 presents the results of investigating this issue using the highly sophisticated spatial 
spreml regression routines from R’s splm package.  In each case at 2-, 4- and 6- lags the 
impacts of cannabis decriminalization on the autism rate is significant below the multiplicity 
threshold limit. 
 
Table 15 presents the results of investigating the issue of the time dependent  changes in 
autism rate 1994-2011 with spatial regression from R’s splm package.  In each case of the 
SARAR and error spml and spgm models the impacts of cannabis decriminalization on the 
autism rate is highly significant well beyond the threshold limit of multiplicity testing. 
 
 
 
Discussion 



 
The above considerations establish beyond reasonable doubt that increasing rates of cannabis 
use are so closely associated with the exponentially increasing rates of autism as to raise 
serious concerns as to the likelihood of a causal relationship. 
 
One notes that all of the criteria of causality defined by Austin Bradford Hill in 1965 are met 
by the described cannabis – autism link.  The data obviously demonstrate major strengths of 
association, consistency across various levels of geospatial resolution, specificity for cannabis 
and not other drugs of addiction, appropriate temporality, and, based on the regression results 
presented above, a dose response relationship.  Quite apart from the data being described at 
three geospatial levels within USA, the data is also consistent other data observed elsewhere 
and similar findings have also been reported in clinics seeing high numbers of such children 
in Australia 1,2. 
 
 
Mechanistic Considerations  
 
However cellular and molecular mechanistic considerations under Hill’s biological 
plausibility and experimental verification criteria are central to any discussion of potential 
causality.  It is considered that it is worth enumerating just a select few of the mechanisms by 
which several cannabinoids have been shown to interfere with brain formation and brain 
function as it seems that such data 8-35 are in fact not widely known amongst the medical or 
related health professions. 
 

1) Epigenetic pathways.  Cannabis and several cannabinoids have been shown to leave a 
heavy footprint on both neural genes and immune genes.  Whilst neural genes are 
obviously involved in neuronal patterning and brain formation it is often not well 
appreciated that the immune system is a major sculptor and formative agent in the 
brain reaching its final form 36,37 

2) Expression of autism genes is disrupted 38-42 
3) Epigenetic effects in sperm 43-47 
4) CNS synapses actually harbour transsynaptic receptor-ligand pairs which form the 

protosynapse before it becomes electrically active and play central roles in forming 
arranging and later scaffolding the synaptic machinery.  One such key receptor-ligand 
pair is neurexin – neuroligin which plays a central role in synapse formation and has 
also been heavily implicated in the development of diseases such as schizophrenia and 
autism 48-53.  

5) Cannabis interferes with cell division of the neuroblasts which are required to actively 
form the brain 21,54-58 

6) Cannabis interferes with radial glial cell function from which the neuronal precursors 
form and which also form the ‘rails’ along which the new neuroblasts move into their 
cortical and subcortical locations  

7) Cannabinoids adversely affect the development of the prefrontal and other cortices 
which play a vital role in higher cortical and executive functioning 59-70 

8) Δ9-THC has been shown to interfere with axonal pathfinding ability by perturbing the 
axonal growth cone which steers axonal development by interfering with stathmin 



71,72.  Hence major axonal pathfinding errors implies that cannabinoid exposure will 
lead to a miswiring of the brain. 

9) Stathmin also controls hippocampal cortical neurogenesis and spinogenesis so that 
these processes are also expected to be perturbed by cannabinoids 

10) Prenatal cannabinoid exposure has also been shown to interfere with long range 
axonal pathfinding from telencephalic corticospinal neurons of both the glutamatergic 
and GABAergic types via CB1R mediation 12 

11) Prenatal cannabis administration has also been shown to lower the seizure threshold 12 
12) Cannabinoids have been shown to affect numerous genes whose expression has been 

shown to impact the development of autism 73-82 
13) Cannabis use has been shown to disconnect white matter from grey matter 8,19,65,83-89 
14) Cannabinoids have an adverse effect on the health and function of both 

oligodendrocytes and oligodendroglial progenitor cells 90-95 
15) Cannabinoids interfere with slit-robo signalling which controls the elaboration of the 

massive cerebral cortex in humans 10,96-101 
16) Cannabinoids adversely affect the cell fate specification of dividing neuroblasts and 

tilt the differentiation ratio against neuronal precursor cells towards astrocytic cell 
lineages 102 

17) In utero proinflammatory signaling is known to be linked with the development of 
schizophrenia and autism in later adult life.  Radial glial cells form the framework 
upon which the developing cortex and subcortical structures are built 103,104, and these 
cells carry receptors for inflammatory cytokines and chemokines 105-107.  Several 
cannabinoids acting through CB1R’s are known to exert proinflammatory actions on 
brain and other tissues 108,109. 

18) This finding is in accord with two CDC reports of a near-doubling of the rate of 
anencephaly in children exposed prenatally to cannabis 110,111 

19) At the time of writing cannabinoid receptors have not been described on radial glial 
cells, although indirect evidence makes their presence not unlikely 

20) Cannabinoids interfere with notch signaling 99,100,112-117 which is a major morphogen 
for brain 118-129, heart 130-137, and blood vessel 138-144 development and has also been 
implicated in many cancers 73-82 

21) Several cannabinoids have been shown to interact at multiple levels with Wnt 
signalling 145-154.  Wnt is a major body morphogen at all stages of body patterning and 
organ development and particularly involved in brain and heart formation and cancer 
development 144.  For example it was recently shown that rostral-caudal non-canonical 
(via Ryk rather than β-catenin) Wnt signalling gradients control the emergence of two 
major populations of parvalbumin- and somatostatin- expressing GABA interneurons 
in the cerebral cortex 155.  These interneurons control such fundamental functions as 
regulating attention states, signal timing and cortical rhythmicity.  And it has further 
been shown that the principal neurons of the telencephalic midbrain, the medium 
spiny neurons which carry dopamine and cannabinoid receptors, dopamine-and cyclic 
AMP-regulated phosphoprotein (DARPP32) and GABA Receptors, in the human 
midbrain hedonic circuit develop under a Wnt gradient in human embryonic brain 
organoids 147. 

22) The hippocampus is a major site of memory formation and is engaged when exploring 
new and novel environments.  Hippocampal neurogenesis continues in adulthood 



from the basal layer of the granule layer.  It was recently shown that neurovascular 
coupling was mediated by nitric oxide released from parvalbumin-positive basal 
GABAergic interneurons’ perivascular endfeet which induced the release of vascular 
IGF1 which in turn controlled the survival of newborn neuroblasts which is the main 
determinant of net neurogenic activity in the subgranular zone 156.  Neuronal nitric 
oxide synthase is known to be impacted by both opioids 157-167 and cannabinoids 35,168-

182.   
23) This implies that hippocampal volume shrinkage which has consistently been 

identified in long term and heavy users of cannabis 183-192 may be induced by several 
mechanistic routes, viz. cannabinoid-mediated neurovascular coupling and 
perturbation of Wnt signalling and inhibition of cell divisions amongst others. 

24) Such observations in adult subjects have obvious parallels during key 
neurodevelopmental periods. 

25) Prenatal cannabis exposure has also been linked with a 40% elevation of the risk of 
the subsequent development of schizophrenia in a major US national survey 14. 

26) Cannabinoids are potent suppressors of mitochondrial respiration in general 193-198 and 
in the brain in particular 199-205.  Indeed CB1R’s have been described on the inner 
membrane of brain mitochondria, along with the complete downstream signal 
transduction machinery just as exists at the plasmalemma 206-212.   

27) This has profound knock-on effects on many aspects of brain function 213 and  
28) Since DNA maintenance reactions are largely endothermic and energy requiring 213 

inevitably impact and impair genome stability and particularly energy intensive 
processes such as 

29) Mitotic and meiotic cell division 213.   
 
 
What must be strongly underscored in considering this list of major perturbations of 
pathways to brain formation is that brains which are perturbed in this way cannot ‘become 
normal - because such brain never were.  Brain formation is a delicately balanced sequential 
finely orchestrated sequence of processes and interference with key steps can readily lead to 
knock-on downstream effects from which recovery onto a normal brain developmental 
trajectory can be impossible. 
 
To reiterate: brains which have been developmentally disturbed in this and other ways many 
times are unable to recover back to normal – as they never were. 
 
 
Hence this brief review confirms that there are multiple known links between cannabis and 
disordered brain development which are known to be impactful and are likely to be 
implicated. 
 
Hence it may rightly be said that indeed the cannabis-autism link thoroughly fulfils all of the 
Hill criteria for causal relationship. 
 
Several other points to emerge from this analysis are noteworthy.  The regression tables 
shown above show clear and unequivocal evidence of spatial lag and spatial error effects.  



This is consistent with the impacts of carefully orchestrated and non-random publicity and 
popularization campaigns being waged sequentially across USA as is known to have 
occurred.  In this manner this marketing campaign would appear to have left its “footprint” in 
the data. 
 
This analysis clearly implicates other cannabinoids beyond simply Δ9-THC.  In addition to 
Δ9-THC cannabigerol and cannabichromene are also noted to have risen most sharply in the 
decades under review and are implicated by the two-step instrumental variable regressions 
presented.  This implies therefore that that cannabinoid preparations which claim to have 
reduced the Δ9-THC content below some mythical threshold are essentially failing 
completely to come to grips with the likely heritable neurotoxicity of several cannabinoids at 
once. 
 
Indeed in view of the toxicity of cannabinoid oils to other plants including the leaves of 
cannabis sativa plants 214,215, it has been claimed that cannabinoids are in fact natural plant 
poisons designed to impair the reproductive fitness of animals which might graze upon them.  
 
Given the spatial and temporal lags demonstrated herein, concerns relating to the delayed 
effects of the insertion of cannabinoids into the food chain can hardly be overstated.  Being 
lipid soluble appreciable amounts of cannabinoids can be absorbed by the oral route and 
indeed cases of per oral poisoning of children and young adults are now well described, 
especially in Colorado.  Indeed reports from birth defects registries exist from areas in France 
where cannabis in the food chain of Europe is fed to animals and the cattle are born without 
legs 216-218.  Humans eat such cannabinoid-fed animals and the rate of phocomelia (no arms) 
is said to have risen some 58-times – which is within the margin of error reported by an 
impressive Hawaiian study of an odds ratio of 21.9 times with 95%C.I. 4.45-65.63 219.  And 
now similar observations are beginning to be made in Germany where three such children 
have been born in the same medium sized hospital in just three months! 220  Clearly there is 
no particular reason that such disabilities should be limited to the extremities and comparable 
findings are to be expected in that most delicate of all organs, the human brain. 
 
It is also important to note that in fact the literature on prenatal cannabis exposure in fact 
describes a spectrum of disorders from autism to impaired cortical development to smaller 
heads 221 to microcephalus 219 to complete lack of the forebrain known as anencephalus 110,111 
to foetal death.  It therefore seems apparent that what we observe as autistic spectrum 
disorder in fact exists on a clinical spectrum of which autism is but one part. 
 
A further extension of this line of thinking is that more subtle perturbations are also possible 
– and indeed are virtually a clinical certainty.  The very clear clinical and educational reality 
playing out every day across medical consulting offices and classrooms from Colorado to 
Australia where caseloads from high cannabis using communities are common is that only 
the best such patients can even be allowed at school or in clinics. Severe behavioural 
problems, major attacks on teaching personnel, parents, grandparents and caregivers alike by 
patients who shortly after are unable to remember any of these attacks have become 
commonplace in children exposed prenatally to cannabis.  As most of the above data have 
been collected through schools, patients who are not able to be accommodated in the 



educational or special educational system “fly under the radar”.  On account of these episodes 
numerous teachers are retiring and being forced out of their profession in both Queensland 
and Colorado.  This implies that notwithstanding the above described robust and objective 
analytical findings it is our belief therefore that everything we have written about in the 
above data analysis is the good news for cannabis rather than the bad. 
 
 
 
 
 
Conclusion 
 
The results of this spatiotemporal investigation confirm, extend and strengthen our earlier 
reports that cannabinoid exposure is causally associated with US national autism rates, by 
demonstrating and confirming these relationships at very high levels of statistical significance 
using advanced spatiotemporal regression techniques with high levels of R-squared in two 
step models from P = 0.00016.   At the national level this relationship was significant at P = 
4.69 x 10-14. We have also shown that cannabis legal paradigms which weaken the illegal 
status of cannabis are associated with increased rates of autism from P = 0.00000339, that is 
with very high levels of statistical certainty.  Moreover by establishing these results at three 
spatial levels, the national, regional and state level, we have shown that the relationship holds 
at all geospatial levels down to this level and thereby robustifed our general conclusion. 
 
 
This analysis has been conducted in order to study the available objective and quantifiable 
data.  However the very evident clinical and educational reality is that the real world situation 
is likely much worse than the scenario described in the present study and, like the iceberg, 
constitutes the predominant mass beneath the robust and convincing and unequivocal 
situation described herein. 
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Table 1.:  Panel Regressions – National Level 
 

 
  

Estimate Std. Error t value Pr(>|t|)
Adj. R-

Squared Chi.Squ. dF P

National Autism Rate
Interactive Models
Panel Model
4 Lags plm(LAutRt~cigmon*log(mrjmon)*anlyr+bngalc+log(cocyr)
plm Log(Autism_Rate) lag(mrjmon, 0:4) cigmon:log(mrjmon) 396.2095 88.6624 4.4687 0.000008 0.95674 292.515 5 <2.2E-16 ***
twoway FX lag(cigmon, 0:4) log(mrjmon) -88.7064 20.2318 -4.3845 0.000012 ***
instrumental method log(cocyr) 9.7895 2.2743 4.3043 0.000017 ***
=amemiya cigmon 937.0985 218.3632 4.2915 0.000018 ***
model= bngalc -75.5216 20.3622 -3.7089 0.000208 ***
pooling

6 Lags
Panel Model plm(LAutRt~cigmon+DCan1825+DCan2634*anlyr+log(cocyr)
plm Log(Autism_Rate) lag(mrjmon, 0:6) cigmon -203.0643 29.1959 -6.9552 3.52E-12 0.99018 812.726 6 <2.2E-16 ***
twoway FX lag(cigmon, 0:6) log(cocyr) 37.8761 5.6152 6.7453 1.53E-11 ***
instrumental method lag(Δ9THC, 0:6) DCan2634:anlyr 60368.8224 9447.9465 6.3896 1.66E-10 ***
=amemiya lag(CBG, 0:6) DCan2634 -3115.6405 495.7087 -6.2852 3.27E-10 ***

anlyr -3195.2865 516.637 -6.1848 6.22E-10 ***
DCan1825 580.1553 94.5944 6.1331 8.62E-10 ***

Model Parameters
Model Type Dependent Variable

Lagged  Instrumental 
Variables Parameter

Parameter



 

 

6 Lags
Panel Model - Cannabis: Tobacco Interaction plm(LAutRt~cigmon*DCan1825+DCan2634+anlyr+log(cocyr)
plm Log(Autism_Rate) lag(mrjmon, 0:6) cigmon 3508.1943 476.375 7.3644 1.78E-13 0.99292 1129.1 7 <2.2E-16 ***
twoway FX lag(cigmon, 0:6) DCan1825 10926.8916 1449.149 7.5402 4.69E-14 ***
instrumental method lag(Δ9THC, 0:6) anlyr 1762.2046 219.5965 8.0247 1.02E-15 ***
=amemiya lag(CBG, 0:6) cigmon:DCan1825 -49883.3748 6610.4042 -7.5462 4.48E-14 ***

log(cocyr) -56.8796 7.9647 -7.1414 9.24E-13 ***
bngalc 226.4019 34.9574 6.4765 9.39E-11 ***
DCan2634 40.508 19.4992 2.0774 0.03776 *

6 Lags, 6 Instruments
Panel Model plm(LAutRt~cigmon+DCan1825+DCan2634*anlyr+log(cocyr)
plm Log(Autism_Rate) lag(mrjmon, 0:6) log(cocyr) 29.6125 5.4668 5.4168 6.07E-08 0.98154 432.448 7 <2.2E-16 ***
twoway FX lag(cigmon, 0:6) cigmon -176.6468 34.0351 -5.1901 2.10E-07 ***
instrumental method lag(Δ9THC, 0:6) anlyr 7009.5056 1451.7631 4.8283 0.000001 ***
=amemiya lag(CBG, 0:6) log(DCan2634):anlyr 2335.2522 493.4054 4.7329 0.000002 ***

lag(log(DCan2634), 0:4) log(DCan2634) -119.5497 25.362 -4.7137 0.000002 ***
lag(DCan1825, 0:4) DCan1825 456.4964 97.3048 4.6914 0.000003 ***

bngalc -52.45 21.4357 -2.4469 0.014411 *



Table 2.: Spatial Lag Model Regressions – Regional Level 
 
 
 

 
 
 

  

Estimate Std. Error t value Pr(>|t|) Parameter Statistic P-value

Spatial Lag Autism_Rate spml(asinh(AutRtReg)~Region,lag=TRUE
Region_Mid-West 0.1852 0.0538 3.4415 0.00058 phi 1.00E-08 *** ***
Region_North-East 0.4350 0.0538 8.0838 6.28E-16 lambda 0.9174 <2.0E-16 *** ***
Region_West 0.1850 0.0538 3.4374 0.00059 ***

Parameter Model
Model Type

Dependent 
Variable Parameter



 
Table 3.:  Spatial Regression by Substances – Regional Level 

 
 

 
  

Model 
Type Technique

Dependent 
Variable Estimate Std. Error t value Pr(>|t|) Parameter Statistic P-value

SARAR log(AutRt)~log(cigmon)*log(mrjmon)*(abodalc)+log(anlyr)+log(cocyr)
spml AutRt log(manlyr) -0.99172 0.14502 -6.8384 8.01E-12 phi 1.00E-08 NA ***

log(mmrjmon) 8.83296 1.68745 5.2345 1.65E-07 rho 0.6521 4.53E-08 *** ***
log(mmrjmon):mAbdAlc -98.0816 21.14819 -4.6378 0.000004 lambda 0.7196 <2e-16 *** ***
log(mcigmon):log(mmrjmon) 3.23837 1.05199 3.0783 0.002082 **
log(mcigmon):log(mmrjmon):mAbdAlc -34.70781 12.79269 -2.7131 0.006666 **
mAbdAlc -144.77873 56.43446 -2.5654 0.010305 *

SARAR log(AutRt)~log(cigmon)*log(mrjmon)*log(anlyr)+(abodalc)+log(cocyr)
spml AutRt mcocyr 18.0038 5.4322 3.3143 0.0009188 phi 1.00E-08 0.4143 ***

log(mcigmon):log(mmrjmon):log(manlyr) -24.3723 9.353 -2.6058 0.0091654 rho 0.9687 <2e-16 ** ***
log(mcigmon):log(mmrjmon) -74.2647 28.7746 -2.5809 0.0098541 lambda -0.2806 0.5175 **
log(mmrjmon):log(manlyr) -33.1224 13.4706 -2.4589 0.0139374 *
log(mmrjmon) -100.6919 41.5017 -2.4262 0.0152575 *
log(mcigmon):log(manlyr) -66.0977 27.4019 -2.4122 0.0158583 *
log(mcigmon) -201.6794 84.4054 -2.3894 0.0168753 *
log(manlyr) -91.4219 39.5662 -2.3106 0.0208546 *
mAbdAlc 9.9389 1.1361 8.7483 < 2.2e-16 ***

Parameter
Parameter ModelGeneral



Table 4.:  Autism Spatial Regressions – Regional 
 

 

Model Type Technique
Dependent 
Variable Instrumental Variables Estimate Std. Error t value Pr(>|t|) Parameter Statistic P-value

Interactive Models
2 Lags
SEM2SRRE log(AutRt)~log(cigmon)*log(mrjmon)*log(anlyr)+(abodalc)+log(cocyr)
+SAR spreml AutismRate lag(log(THCRt), 0:2) log(mmrjmon) 0.1229 0.0572 2.1468 0.03181 phi 0.7601 0.6259 *

lag(log(CBGRt), 0:2) psi 0.9908 < 2.2e-16 ***
lag(log(AutismRt), 1:2) rho -0.8805 0.0003 ***

4 Lags
SEM2SRRE log(AutRt)~log(cigmon)*log(mrjmon)*log(anlyr)+(abodalc)+log(cocyr)
+SAR spreml AutismRate lag(log(THCRt), 0:4) mAbdAlc 6.3759 0.6118 10.4212 <2e-16 phi 4.82E-08 NA ***

lag(log(CBGRt), 0:4) log(manlyr) 548.5112 66.0752 8.3013 <2e-16 rho -0.5409 NA ***
lag(log(AutismRt), 1:4) log(mcigmon) 1111.3397 134.0059 8.2932 <2e-16 lambda -0.2832 NA ***

log(mcigmon):log(manlyr) 367.6514 44.3659 8.2868 <2e-16 ***
log(mmrjmon) 541.0568 65.3968 8.2734 <2e-16 ***
log(mmrjmon):log(manlyr) 178.5970 21.6523 8.2484 <2e-16 ***
log(mcigmon):log(mmrjmon) 357.2873 43.5731 8.1997 2.41E-16 ***
log(mcigmon):log(mmrjmon):log(manlyr) 118.1826 14.4326 8.1886 2.64E-16 ***
mcocyr -5.5914 1.4544 -3.8445 0.0001208 ***

6 Lags
SEM2SRRE log(AutRt)~log(cigmon)*log(mrjmon)*log(anlyr)+(abodalc)+log(cocyr)
+SAR spreml AutismRate lag(log(THCRt), 0:6)

lag(log(CBGRt), 0:6) log(manlyr) 740.5144 24.4080 30.339 <2e-16 phi 1.3E-07 1 ***
lag(log(AutismRt), 1:6) log(mcigmon) 1491.3069 49.8193 29.934 <2e-16 psi -0.993545 <2e-16 *** ***

log(mcigmon):log(manlyr) 494.3370 16.5167 29.930 <2e-16 rho 0.531139 <2e-16 *** ***
log(mmrjmon) 723.6168 24.3891 29.670 <2e-16 ***
log(mmrjmon):log(manlyr) 239.4310 8.0846 29.616 <2e-16 ***
log(mcigmon):log(mmrjmon) 475.7265 16.3914 29.023 <2e-16 ***
log(mcigmon):log(mmrjmon):log(manlyr) 157.6794 5.4370 29.001 <2e-16 ***
mAbdAlc 1.0628 0.0958 11.089 <2e-16 ***
mcocyr -9.6481 0.5249 -18.382 <2e-16 ***

General
Parameter

Parameter Model



 
Table 5.:  OLS Regression – State Level 

 

 

Estimate Std. Error t value Pr(>|t|) R-Squared F dF P

log(AutRt) ~ PC1 + log(mrjmon)
PC1 -0.2747 0.0235 -11.71 <2e-16 0.282 98.2 2,493 <2.0E-16 ***
log(mrjmon) 1.0962 0.0902 12.16 <2e-16 ***

log(AutRt) ~ cigmon + abodalc + log(anlyr) + log(cocyr) + log(mrjmon)
cigmon -4.1922 0.6266 -6.691 6.1E-11 0.3206 47.73 5,490 <2.0E-16 ***
abodalc -11.5664 1.8587 -6.223 1.1E-09 ***
log(cocyr) -0.5292 0.0824 -6.419 3.2E-10 ***
log(mrjmon) 0.9279 0.0931 9.965 <2.0E-16 ***

Value Std.Error DF t-value p-value AIC BIC logLik
log(AutRt)~PC1 + log(mrjmon), random=~1|State
PC1 -0.3017 0.0191 444 -15.7954 0.0000 354.7809 375.7834 -172.3904 ***
log(mrjmon) 1.1795 0.1127 444 10.4696 0.0000 ***

log(AutRt) ~ cigmon + abodalc + log(anlyr) + log(cocyr) + log(mrjmon), random =~1|State
cigmon -7.4827 0.8656 441 -8.6449 0.0000 222.6718 256.2271 -103.3359 ***
abodalc -9.6339 2.0254 441 -4.7565 0.0000 ***
log(anlyr) 0.6297 0.1339 441 4.7024 0.0000 ***
log(cocyr) -0.6596 0.0704 441 -9.3668 0.0000 ***
log(mrjmon) 0.8011 0.1068 441 7.5005 0.0000 ***

Parameter
Parameter Model Parameters

Parameter
Parameter Model Parameters



 
 

Table 6.:  Results of LaGrange Multiplier Tests from GeoDa  
 
 

 
 
 

  

Test MI/DF Value P-Value
Moran's I 0.23 28.735 0.0000
Lagrange Multiplier - Lag 1 178.841 0.0000
Robust LM Lag 1 10.942 0.0009
Lagrange Multiplier - Error 1 556.614 0.0000
Robust Error 1 388.715 0.0000
Lagrange Multiplier - SARMA 2 567.556 0.0000



Table 7.:  OLS Regressions with Principal Components  
 

Estimate Std. Error t value Pr(>|t|) R-Squared F dF P

Linear Model
lm(log(AutRt)~PC1 = log(mrjmon))
PC1 -0.27589 0.02341 -11.79 <2e-16 0.2808 98.39 2,497 <2.0E-16 ***
log(mrjmon) 1.08406 0.0893 12.14 <2e-16 ***

Lag
spgm(log(AutRt) ~ PC1 + log(mrjmon))
PC1 -0.132794 0.021784 -6.096 1.09E-09 ***
log(mrjmon) 0.49867 0.113345 4.3996 1.09E-05 ***

Spatial Error
spgm(log(AutRt) ~ PC1 * log(mrjmon))
lambda 0.9906 0.0473 20.9563 <2e-16
PC1 -0.2591 0.1238 -2.0932 0.0363 *
PC1:log(mrjmon) -0.0891 0.0444 -2.0069 0.0448
Residual variance (sigma squared): 0.92801, (sigma: 0.96333)

SARMA
spgm(log(AutRt) ~ PC1 + log(mrjmon) - PC1)
lambda 1.025464 0.018093 56.6773 <2.0E-16 ***
log(mrjmon) -0.123075 0.063698 -1.9322 0.05334 .

Parameter
Parameter Model Parameters



Table 8.:  Spatial Regressions with Principal Components  
 

 

Estimate Std. Error t value Pr(>|t|)

Interactive Models
OLS
lm(log(AutRt)~cigmon*log(mrjmon)*(abodalc)+log(anlyr)+log(cocyr)
log(cocyr) -0.4961 0.0796 -6.233 9.80E-10
cigmon:log(mrjmon) 12.7247 2.2613 5.627 3.1E-08
cigmon 35.0032 6.5149 5.373 1.2E-07
cigmon:abodalc -370.6772 79.3021 -4.674 3.8E-06
cigmon:log(mrjmon):abodalc -115.4399 27.6657 -4.173 0.00004

SPGM

OLS w 2 Endogenous Variables
spgm(log(AutRt)~cigmon*log(mrjmon)*(abodalc)+log(anlyr)+log(cocyr)
log(d9THCRt) 1.9736 0.0904 21.829 <2.0E-16
cigmon:abodalc -146.3070 32.7233 -4.471 7.8E-06
cigmon:log(mrjmon):abodalc -46.4296 11.6404 -3.989 0.00007
log(mrjmon) -0.8371 0.2761 -3.032 0.00243

SARAR
spgm(log(AutRt)~cigmon*log(mrjmon)*(abodalc)+log(anlyr)+log(cocyr)
lambda 0.8472 0.0327 25.919 <2.0E-16
cigmon:abodalc -93.6156 28.1087 -3.331 0.00087
log(mrjmon) 0.6538 0.2142 3.052 0.00228
cigmon:log(mrjmon):abodalc -26.1061 9.7082 -2.689 0.00717

Parameter
Parameter



 
 

SARAR w 5 Endogenous & Instrumental Variables
spgm(log(AutRt)~cigmon*log(mrjmon)*(abodalc)+log(anlyr)+log(cocyr)
lambda 0.7430 0.0898 8.278 <2.0E-16
cigmon:abodalc -91.0827 27.0962 -3.362 0.00078
cigmon:log(mrjmon):abodalc -29.0080 9.2524 -3.135 0.00172
log(d9THCRt) 0.4999 0.1649 3.031 0.00244
log(cocyr) 0.1316 0.0497 2.647 0.00813

Error
spgm(log(AutRt)~cigmon*log(mrjmon)*(abodalc)+log(anlyr)+log(cocyr)
log(cocyr) -0.4200 0.0736 -5.704 1.2E-08
cigmon:log(mrjmon):abodalc -144.1570 30.0759 -4.793 1.6E-06
cigmon:abodalc -365.9616 86.4525 -4.233 2.3E-05
log(mrjmon):abodalc 24.0915 6.5993 3.651 0.00026
cigmon:log(mrjmon) 6.0794 1.7614 3.451 0.00056
abodalc 50.5362 19.0216 2.657 0.00789
cigmon 11.2367 5.6727 1.981 0.04761

Error w 5 Endogenous & Instrumental Variables
spgm(log(AutRt)~cigmon*log(mrjmon)*(abodalc)+log(anlyr)+log(cocyr)
log(d9THCRt) 1.9391 0.1453 13.350 <2.0E-16
log(mrjmon) -1.6102 0.3204 -5.025 5.0E-07
cigmon:abodalc -140.2022 31.0562 -4.515 6.3E-06
cigmon:log(mrjmon):abodalc -45.7265 11.0677 -4.132 0.00004
log(CBGRt) -0.3005 0.1245 -2.413 0.01582
log(cocyr) 0.1513 0.0635 2.382 0.01722
log(CBCRt) 0.7170 0.3408 2.104 0.03540



 

Model 
Type Technique

Dependent 
Variable Parameter Estimate Std. Error t value P-Value Parameters Value P-Value

SARAR log(AutRt)~log(cigmon)*log(mrjmon)*(abodalc)+log(anlyr)+log(cocyr)
spml AutRt cigmon -4.2894 0.7639 -5.6151 0.00000 ***

abodalc -9.4348 1.8064 -5.2230 0.00000 ***
log(mrjmon) 0.4761 0.1029 4.6259 0.00000 ***
log(cocyr) -0.3593 0.0719 -4.9960 0.00000 ***
log(anlyr) 0.3520 0.1225 2.8746 0.00405 **

Error log(AutRt)~log(cigmon)*log(mrjmon)*(abodalc)+log(anlyr)+log(cocyr)
spml AutRt cigmon:log(mrjmon) 1.9416 0.5127 3.7873 0.00015 phi 4.038143 4.20E-06 **

cigmon:abodalc -73.2933 20.1974 -3.6289 0.00028 rho -0.536384 1.03E-13 *
log(anlyr) 0.2258 0.0727 3.1034 0.00191 lambda 0.79238 <2.0E-16 ***
cigmon:log(mrjmon):abodalc -39.0231 13.3130 -2.9312 0.00338 ***
log(mrjmon):abodalc 4.8343 1.8066 2.6759 0.00745 **
log(cocyr) -0.0962 0.0387 -2.4877 0.01286 **

SARAR log(AutRt)~log(cigmon)*log(mrjmon)*(abodalc)+log(anlyr)+log(cocyr)
spgm AutRt cigmon:abodalc -93.6156 28.1087 -3.3305 0.00087 lambda 0.84719 <2e-16 *** ***

log(mrjmon) 0.6538 0.2142 3.0518 0.00228 **
cigmon:log(mrjmon):abodalc -26.1061 9.7082 -2.6891 0.00717 **

Error log(AutRt)~log(cigmon)*log(mrjmon)*(abodalc)+log(anlyr)+log(cocyr)
spgm AutRt cigmon -4.2894 0.7639 -5.6151 1.97E-08 ***

log(mrjmon) 0.4761 0.1029 4.6259 3.73E-06 ***
abodalc -9.4348 1.8064 -5.2230 1.76E-07 ***
log(anlyr) 0.3520 0.1225 2.8746 0.004046 **
log(cocyr) -0.3593 0.0719 -4.9960 5.86E-07 ***

General Parameters Model 



Table 9.:  Additive Spatial Models 
 

 



Table 10.:  Interactive Spatial Models 
 

 



  



 
  





Table 11.:  Significance of the Changes 
 

 
 
 

  

GMErrorsar

Estimate Std. Error t value Pr(>|t|) Parameter Statistic

dmrjmonA:dabodalcA 41530.067 11723 3.5426 0.00040 Lambda -0.2689
dcigmonA:dmrjmonA:dabodalcA -479233.385 167935.974 -2.8537 0.00432 z -0.4716

ML Varianc 605.92
GM Argmin  593.64

Errorsarlm

Estimate Std. Error t value Pr(>|t|) Parameter Statistic P-value

dmrjmonA:dabodalcA 167572.3 47485.8 3.5289 0.00042 Lambda -0.5854 0.03497
dcigmonA:dmrjmonA:dabodalcA -1748861.1 649300.2 -2.6935 0.00707 z -2.4052 0.01616
dmrjmonA -3868.1 1562.7 -2.4752 0.01332 Wald 5.785 0.01616
dabodalcA -1748.9 856.8 -2.0411 0.04124 LogLik -228.32

ML Varianc 501.09
AIC 474.64

Parameter
Parameter Model

Parameter
Parameter Model



Table 12: OLS Regression of the Changes 1994-2011 
 

 
 

  

Estimate Std. Error t value Pr(>|t|) Adjusted 
R-Squared

F dF P

Linear lm(log(AutRt)~Year)
Exponential AutRt Year 1.81E-01 3.00E-03 60.18 <2e-16 0.7799 3622 1,1021 <2e-16 ***

Linear lm(log(AutRt)~Status
Exponential AutRt Status_Decriminalised 0.44145 0.10024 4.404 1.17E-05 0.4612 25.71 2,1020 1.28E-11 ***

Status_Medical 0.75843 0.12127 6.254 5.87E-10 ***

Linear lm(log(AutRt)~Year+Status
Exponential AutRt Status_Decriminalised 2.85E-01 4.74E-02 6.001 2.72E-09 0.7871 1,261.00 3,1019 <2e-16 ***

Status_Medical 3.56E-03 5.87E-02 0.061 0.952

Linear lm(log(AutRt)~Year*Status
Exponential AutRt Year 1.80E-01 3.03E-03 59.575 <2e-16 0.7871 1,261.00 3,1019 <2e-16 ***

Year:Status_Decriminalised 1.42E-04 2.37E-05 6.002 2.70E-09 ***

Quadratic lm(log(AutRt)~poly(Year,degree=2)*Status)
Exponential AutRt Year 36.61922 0.55254 66.274 <2e-16 0.8215 1177 4,1018 <2e-16 ***

Year2 -7.65663 0.54535 -14.04 <2e-16 ***
Status_Decriminalised 0.29654 0.04344 6.827 1.49E-11 ***

Model Type Dependent 
Variable

Parameter

Parameter Model Parameters



Table 13.: LM Tests 
 
 

 
 

  

Test MI/DF Value P-Value
Moran's I 0.0574 11.6224 0.00000
Lagrange Multiplier - Lag 1 101.8425 0.00000
Robust LM Lag 1 2.0397 0.15324
Lagrange Multiplier - Error 1 116.276 0.00000
Robust Error 1 16.4733 0.00005
Lagrange Multiplier - SARMA 2 118.3158 0.00000



Table 14.:  Spatially Lagged spreml Models of Cannabis Legal Status  
 

 
  

Model Type Technique
Dependent 
Variable Lagged Variable Estimate Std. Error t value Pr(>|t|) Parameter Statistic P-value

Interactive Models
2 Lags
SEM2SRRE log(AutRt)~Status
+SAR spreml AutismRate lag(log(AutRt), 1:2) Legal_Status 7.38004 2.16613 3.407 0.000657 phi 0.000002 NA ***

psi 0.962170 < 2.2e-16 ***
rho -0.877650 < 2.2e-16 ***
lambda 0.861574 < 2.2e-16

4 Lags
SEM2SRRE log(AutRt)~Status
+SAR spreml AutismRate lag(log(AutRt), 1:4) Legal_Status 7.58305 2.2676 3.3441 0.000826 phi 1.95E-07 1

psi 0.958700 < 2.2e-16 *** ***
rho -0.883240 < 2.2e-16 ***
lambda 0.860488 < 2.2e-16

6 Lags
SEM2SRRE log(AutRt)~Status
+SAR spreml AutismRate lag(log(AutRt), 1:6) Legal_Status 7.72938 2.37342 3.2566 0.001127 phi 0.000001 NA

psi 0.957790 < 2.2e-16 ** ***
rho -0.873810 < 2.2e-16 ***
lambda 0.855205 < 2.2e-16 ***

8 Lags
SEM2SRRE log(AutRt)~Status
+SAR spreml AutismRate lag(log(AutRt), 1:8) Legal_Status 7.8614 2.4359 3.2272 0.001250 phi 0.000006 NA **

psi 0.957120 < 2.2e-16 ***
rho -0.871390 < 2.2e-16 ***
lambda 0.857060 < 2.2e-16 ***

General
Parameter

Parameter Model



Table 15.:  Spatial Models 1994-2011 
 
 

 
  

Model 
Type Technique Dependent Variable Parameter Estimate Std. Error t value P-Value Parameters Value P-Value

SARAR
spml(AutRt~Status, lag=TRUE,spatial.error="kkp")

spml Autism_Rate StatusDecriminalised 20.4010 3.1544 6.4676 9.96E-11 phi 1.6017 7.36E-06 *** ***
StatusMedical 10.8493 1.5170 7.1519 8.56E-13 rho -0.9520 <2e-16 *** ***

lambda 0.9396 <2e-16 ***

spgm(AutRt~Status, lag=TRUE, spatial.error=TRUE)
spgm Autism_Rate StatusDecriminalised 18.2614 3.4334 5.3187 1.05E-07 lambda 0.9726 <2e-16 *** ***

StatusMedical 6.6898 2.0011 3.3431 0.00083 ***

Error
spml(AutRtStatus, lag=FALSE,spatial.error="kkp")

spml Autism_Rate StatusDecriminalised 21.0633 4.5339 4.6457 3.39E-06 phi 1.2519 3.42E-06 *** ***
StatusMedical 6.7664 2.2501 3.0072 0.00264 rho 0.8201 <2e-16 *** ***

spgm(AutRt~Status, lag=FALSE,spatial.error=TRUE)
spgm Autism_Rate StatusDecriminalised 21.5860 4.7288 4.5648 5.00E-06 ***

StatusMedical 7.5654 2.3604 3.2051 0.00135 **

General Parameters Model 



 
 
 
 
 
  



Figure Legends 
 
 
 
Figure 1:  National Autism Rate USA 1994-2011 
 
 
Figure 2.: Cumulative National Autism numbers USA, 1994-2011 
 
 
Figure 3.:  US National Level Drug Use 2000-2017 
 
 
Figure 4.:  Relative Autism Rate by Region 1992-2011 
 
 
Figure 5.:  Absolute Autism Rate by Region 
 
 
Figure 6.:  Regional Autism Rate, 1994-2011 
 
 
Figure 7.:  US Relative Autism Rate by State 1992-2011 
 
 
Figure 8.:  US Absolute Autism Rate by State 1992-2011 
 
 
Figure 9.:  Bivariate Plots of Cannabis and Autism Emergence 2000 – 2011 
 
 
Figure 10.:  Bivariate Autism and Cigarette Emergence Maps 2000 – 2011 
 
 
Figure 11.:  K clustering of Autism Rate – from GeoDa 
 
 
Figure 12.:  Hinge and Natural Breaks Maps – from GeoDa 
 
 
Figure 13.:  Dorlings Cartogram Autism USA 
 
 
Figure 14.:  Dorlings Cartograms – Autism, Cannabis, THC and Cannabidiol Exposures 
 
 



Figure 15.:  Scatterplot Matrix – Autism with Cigarettes, Abuse or Dependence on Alcohol 
and cocaine use 
 
 
Figure 16.:  Scatterplot matrix – Autism rate with Δ9-THC, cannabidiol and cannabinol 
exposures 
 
 
Figure 17.:  LISA (Local Indicators of Spatial Autocorrelation) plot of autism and cannabis 
 
 
Figure 18.:  Bivariate LISA plot of autism and Δ9-THC. 
 
 
Figure 19.:  3-D Regression surface plot of THC concentration, time and autism rate in 
NCSS. 
 
 
Figure 20.:  3-D smoothed Regression surface fit in NCSS. 
 
 
Figure 21.:  3-D Relationships of THC concentration, time and autism rate with separate 
regression surfaces for each state. 
 
 
Figure 22.:  3-D fitted surfaces of THC concentration, time and autism rates in OriginLabs. 
 
 
Figure 23.:  Autism variogram in SpaceStat. 
 
 
Figure 24.:  Monthly Cannabis Variogram  in SpaceStat. 
 
 
Figure 25.:  Δ9-THC exposure Variogram in SpaceStat. 
 
 
Figure 26.:  Differences in Autism Rate over Time. 
 
 
Figure 27.:  Differences n Autism Rate 2002-2011. 
 
 
Figure 28.:  Changes in Autism Rate and Drug Use 2002-2011 for each Variable. 
 
 



Figure 29.: Autism Rate by Cannabis Legal Status for IDEA and ADDM Datasets. 
 
 
Figure 30.:  Change in Autism Rate 1995-2011 by Cannabis Legal Status. 
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F7 - Autism Rate ~ 20 Years
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F8 - Autism by State
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F10 - Bivariate Autism and Cigarette Emergence Maps

10



F11 - K-Clusters
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F13 - Dorlings Cartogram Autism USA



F14 - Cartograms – Autism ~ Cannabis, THC and CBD 
Exposure



F15 - Scatterplot Matrix – ASD ~ Cigs, Alc, Cocaine



F16 - Scatterplot Matrix – ASD ~ Mrj, THC, CBD



F17 - ASD ~ THC
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F18 - Bi-LISA Cluster Map - Autism v THC
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F19 - Autism ~ Time ~ THC Concentration

NCSS Software



F20 - 3D Smoothed Regression Surface

NCSS Software



F21 - 3-D Relationships – THC, Time & Autism

NCSS Software



F22 - Autism by THC by Time

Adjacent Median Smoothing
Negative Exponential Smoothing

OriginLab Software



F23 - Variography - Autism



F24 - Variography – Monthly Cannabis Use



F25 - Variography – Δ9-THC Consumption (Estimated)



F26 - Changes in Autism



F27 - Change Autism Rate 2002-2011



F28 - Changes Autism & Drug Use 2002-2011



F29 - Status



F30 - Change 1995-2011 by Legal Status
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